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Exact N-soliton solutions of the extended nonlinear Schrodinger equation
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By use of Hirota’s direct method and a simple transformation, we obtain the exact N-soliton solutions

of the extended nonlinear Schriodinger equation,
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under the conditions 3k"y =Bk’ and k"y=pBk'", respectively. The features of the solutions are dis-

cussed.

PACS number(s): 42.81.Dp, 42.65.—k, 42.50.Rh, 52.35.Sb

I. INTRODUCTION

It is well known that the propagation of a picosecond
optical pulse in a monomode optical fiber (not including
optical fiber loss) is described by the nonlinear
Schrodinger (NLS) equation [1]

9q k" 3 2 =
T2 a2 +Blgl*¢=0. (1
In this equation, q is a complex envelope amplitude, ¢
represents the time (in the group-velocity frame), z
represents the distance along the direction of propaga-
tion, k'’ is the second derivative of the axial wave number
k(=2 /A) with respect to the angular frequency o of the
light wave at the central frequency w, and describes the
group-velocity dispersion, B=n,w,/(cA.4) is the
effective nonlinear coefficient where n, is the Kerr
coefficient of glass, ¢ is the speed of light in vacuum, and
A ¢ is the effective core area of the fiber. Hasegawa and
Tappert [1] showed theoretically that an optical pulse in
a dielectric fiber forms a solitary wave based on the fact
that the wave envelope satisfies the NLS equation. Seven
years after the prediction of Hasegawa and Tappert, Mol-
lenauer, Stolen, and Gordon [2] succeeded in the genera-
tion and transmission of optical solitons in a fiber. How-
ever, since then further experimental and theoretical
works [3,4] have shown that for femtosecond optical
pulses, the NLS equation is no longer valid and the effect
of high-order terms should be taken into account, and
propagation of a femtosecond optical pulse in monomode
optical fiber (not including linear and nonlinear optical
fiber loss) can be described by the extended nonlinear
Schrddinger equation
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where ¥y =2B/w,, k'" is the third derivative of the axial
wave number k with respect to the angular frequency w
at w=w, and describes third-order dispersion. We have
obtained the exact N-soliton solutions of Eq. (2) in the
case of k'"'=0 [5]. In general, Eq. (2) may not be com-
pletely integral. If k", B, v, and k'" take some special
value, the exact soliton solutions of Eq. (2) can exist. In
the present paper, we give the exact N-soliton solutions of
Eq. (2) in the cases 3k"y =pBk"’ and k"y =Bk'" by use of
Hirota’s direct method [6,7].

II. EXACT N-SOLITON SOLUTIONS
UNDER THE CONDITION 3k’ =Bk'"
By making the transformation

g(zt)
flz,t)’

and substituting Eq. (3) into (2), under the condition
3k"y=Bk"" we can obtain

q(z,t)= (3)
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D,(g*g)=0, (6)

where g(z,t) is a complex function and f(z,¢) is a real
function with respect to z and ¢, and the bilinear operator
D"D/ is defined by
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The exact solutions of Egs. (5)—(7) can be expressed as in —k"(n;—n;)? )
the following forms ¢ij=1n—B__— fori=12,...,N
(2N)
flz,t)= 3 exp| 3 ¢p,1p,,uj+2p,,§, , (8) and j=1,2,...,N ori=N+1,N+2,...,2N
1n=0,1 i,jli<j)
(2N) 2N and j=N+1,N+2,...,2N, (13)
giz,t)=3"exp| ¥ @uvivi+t 3 vili|, 9
v=0,1 L jli<j) i=1 where * implies a complex conjugate, 7; is a real param-
(2N) 2N eter, £2 is a complex constant; 3.=o,1 indicates the
grz=3"exp| 3 @yviv;t T vibi |, (10)  summation over all possible combinations of p,=0,1,
v=0.1 biti<j) i=1 4,=0,1,..., u,xy=0,1 under the condition
with Shwi=3N pivns Zv=01 and Iyl indicate the
summation over all possible combinations of v;=0,1,
k" " 1 .
;=K z+171;+§° K; —-—1717}+—6—77] R =0,1,..., v,5y=0,1 under the R conditions
2,-1" _1+21—1V:+1v and 1+3X v, =3V v, y, re-
Cien=C! Kiixy=K! miy=n; spectively; and 3{2¥; _, indicates the summation over all
. possible pairs taken from 2N elements with the specified
for j=1,2,...,N, (1)  ¢ondition j>i, as indicated. We assume all 7); are
_ B . different from each other.
@;;=In k", +, P fori=12,....N Then, we show that f and g defined by Egs. (8)-(13)
ey satisfy Egs. (4)-(6). Substituting the expressions for f
and j=N+1,N+2,...,2N, (12) and g into Eqs. (4)-(6), we have
|
" 2 -7 010 (2N) 2N
- 2 n:0; | — 2 m0; | lexp| X @uvivitpp)+ 3 (vitp)6 =0, (14)
v=0,1u=0,1 1——1 i=1 i=1 i,jli<j) i=1
k" w2 am
- 2 X |Zmoi|exp| 3 @ylpiptpip;)t 2 (i )5,
p=0,1p'=0,1 |i=1 i, jli<j) i=1
2N)
+BY" ' exp| ¥ @ylvivitvv)+ 2 (vi+v;)¢ |=0, (15)
v=0,1v=0,1 ijli<j) i=1
and
2N (2N)
> o lexp| 3 @ vivitviv)+ E (vi+v;)¢ | =0, (16)
v=0,1v=0,1 |i=1 ijli<j) i=1
I
where o,=v;,—pu;, o;=p;—p;, o;=vi—v; for  where ¢,y represents that the summation over v and p
i=12,...,2N. should be performed under the following conditions
Let the coefficients of the factor
L+M L'+M ‘Vi+[l.,-=1 fOl'i=1,2,...,L ori—N=1,2,...,L’,
+ + 2 2¢; ,
xp ,;, 6i ,% bient 2 it Z Liew vi=p,=1 for i=L+1,L+2,...,L+M

in Egs. (14)-(16) be D, D,, and D,, respectively. From
Eg. (14), we have

" , . 2N k"
=2 E Cvu ’EK,'U,-—

v=0,1p=0,1 i=1

2

En.

i=1

3

lk”’

211.,

i=1

(2N)

> ‘P.‘j(Vi

i jli<j)

X exp , (17)

vitup;)

or i—N=L'+1,L'+2,...
v;=p;=0 for i=L+M~+1,L+M+2,...,N
=L'+M'+1,L'+M'+2,...,N .

,L'+M’,

ori—N
For convenience, let
6;,=0;, R i

BitrL="0isN ki+L=

fori=12,...,L".

=K;, f;=mn; fori=12,...,L,

ol _— —
—Kiyvns s ="Mis+n
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Under the conditions above we find that the conditions
N N N N
D=2 4y and J v, =1+ F vy
i=1 i=1 v=1 i=1
are compatible and each of them can be converted to
> 6,=1
i=1

if, and only if L+2M=1+L"'+2M’'. Hence, we have,
for L +L'=o0dd

D,= 4D,
L+L' w [L+L 2
, k .
=4 3 i 3 Ko~ | 3 40,
g==l1 i=1 i=1
ik’ L+L’/\ 3
- 6 z T’i&l
i=1
' LA A V2 1/2(1+6i6.)
X(LfIL) k"(7; nj) ] J ,
ijli<j) B
(18)

where A4 is independent on &, I _,, implies the
summation over all possible combinations of
¢,=x1,6,==1,...,8,,-==*1 under the condition
St 8,=1 and Hi‘j:i<j) indicates the product of all
possible combinations of pairs chosen from L+L’ ele-
ments with the specified condition j > i.
For L + L’'=even, similar procedures give
2

k" L+L’
ﬁzz Tzn 2 "7,'6,- +B 2”,
o=x1 | i=1 o=zl
1/201+6,8 )
(L+L) | —k"(H,—7,)? i%)
o e L
i, jli<j) B
and
L+L (L+L"
53=E"’ 2 76| I
o=+1 | i=1 ijli<j)
1/201+8,8 )
_k”(ﬁi_ﬁj)z] i%j
X|—— ) (20)
B
where 37 _., and 37 ., imply the summation
over all possible combinations of &,==1,
6,==x1,...,6,,,.=*1 under the  conditions

St 6,=0 and 3 I 6, =—2, respectively. Thus, f
and g defined by Eqgs. (8)-(13) are the solutions of Egs.
(4)-(6) provided that the following identities hold:

D,=0 forodd n=L+L’, 21
D,=0and D,=0 for even n=L+L" . (22)

We shall prove the identities by the following method.
ﬁl, ﬁz, and 53 have the following properties: (i) 51, ﬁz,
and D; are symmetric polynomials of 1, 175, . . ., 1, (ii)
if 7, =m,, then
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ﬁl(ﬁlvﬁz""7ﬁn)
n KA
:2 H _Bijﬁl(nynh .. ’nn) ’ (23)
ji=3
ﬁ2(ﬁl’n2’ s Tn)
n __kll(ﬁ —'77) R R
=211 [; Dy (A gy fn), (24
j=3
ﬁS(ﬁlynzy yﬁn)
no—k R
=211 3 LDy By - -5 A,) . (25)
j=3

The identities ﬁl =0, ﬁ2=0, and 53 =0 are easily
verified for n =1 and n =2, respectively. Now, we as-
sume the identities hold for n —2. Then, relying on the
properties (i) and (ii), it is seen that 51, 52, and D, can
be, respectively, factorized by a symmetric polynomial

(n)

H (ﬁi _ﬁj )

ijli<j)
of degree n(n —1). On the other hand, Egs. (18)-(20)
show that the degree of ﬁl, ﬁz, and 53 are
(n—1)*/2+3, n(n—1)/2+2, and n(n—1)/2+3, re-
spectively. Hence, ﬁ,, ﬁz, and 53 must be zero for n,
and the identities have been proved.
From Egs. (8)-(13), we can obtain a fundamental soli-

ton solution of Eq. (2)
172

7 sech

"

(z,t)=
qlz B

X |m |t+ Sz | e TR (26)

where 7) is the inverse of the soliton width, and forms of f
and g for N =2

=1_ Be€1+§f _ B(eg‘+g;+e§1'+§2) _ ﬂe§2+§;

f
skmt kw4
BZ(nl_n2)4egl+§2+§T+§2*
+ 2,22 4 ’ (27)
16(k" )Y niny(n; +m,)
*
¢ Is 3(771—772)2e‘§1+§:)'+gl
g=e l+e 2= 1,2 2
4k"ny(ny+m)
Bon =gy
_ (28)
4k"77%("71+"72)2
Taking
O=—1lin Blm, = m,)” :
T Ak i )
B(771—772)2

— 4k "3+,

in Egs. (27) and (28), we obtain the two-soliton solution of
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Eq. (2)
172
—k” 2(171—{-1,2) k' k" k' k"
q(z,t)= B 7 =] 17, cosh n2t+—6—17§z exp —1—2—11%2 +m, cosh n1t+—6—1ﬁz exp —tTngz
" (9,+n,)? "
X {cosh |(n,+m,)t+ k——(n?+n%)z + m—nzzcosh (my—m)t+ L(n%—ng)z
6 (m=m,) 6
4nm k" -
172
+mcos —‘_'2‘—(17%—'7]%)2 ] ’ (29)
[
having taken k'”=y=0, 9,=1, and 1,=3, the soliton "
solutions (26) and (29) become those of the NLS equation, D,— TD% (gfH=0, (34)
respectively [3].
It is easily seen that the solutions (26) and (29) are k", s
different from those of the NLS equation only in the fol- —— Drlfi=re’, (35)

lowing aspects: (i) The velocity of the soliton (in group-
velocity frame) is proportional to third-order dispersion
and square of its width (or the inverse of its amplitude),
the soliton of the taller peak travels slower and is nar-
rower; (ii) Two-soliton solution (29) is the nonlinear over-
lap of two solitons with different amplitude (or width)
moving along propagation direction at different veloci-
ties, which results in breakup of the bound state of the
soliton and evolves into two completely separated soli-
tons. Therefore, the solution (29) is aperiodic and third-
order dispersion acts to decompose the bond soliton into
its component solitons. The results above are in agree-
ment with the analysis in Ref. [4]. It can be shown that
the conclusions above are valid for the higher-order soli-
tons.

III. EXACT N-SOLITON SOLUTIONS
UNDER THE CONDITION k"'y=gk"""

In order to obtain the soliton solutions of Eq. (2) under
the condition k"'y =Bk'", letting

q(z,t)=p(z, T)exp[i(AwT —Akz)] , (30)
with
k" (ku)2 (ku)3
= — =t+ =
Aw k' ’ T=t 2k z, 6(kul)2 ’ (31)

and substituting Eq. (30) into (2), under the condition
k"y=pBk'' we obtain the envelope equation correspond-
ing to Eq. (2)

e a3
B K" Fp ., a3

3z 6 ar’ P ar 32)

where T represents the time in a new group velocity
frame, @ and k correspond to the constant shifts relative
to the original carrier frequency @, and wave number k,
p(z,T) is a real function of the z and T which is really the
envelope function of light wave. By making the transfor-
mation

8T
p(z,T) T

and substituting Eq. (33) into (32), we can obtain

(33)

6

where g(z,T) and f(z,T) are real functions of z and T.
The exact solutions of Egs. (34) and (35) can be expressed
as in the following forms

(2N) 2N
fzD)= 3 exp| X o@umip;t 3 pbi| (36)
2=0,1 i,jli <j) i=1
(2N) 2N
g(zD)=3"exp| 3 @uviv,it 2 vibi|, 37
v=0,1 i,jli<j) i=1
with
klll
§i=Kiz+n,T+E), Ki=+_6“ s
Civn=Ci M+n="n> Kirn=K;
for i=1,2,...,N, (38)
3
y=In——"2—— fori=1,2,...,N
‘pj _klu(,']i+nj)2
and j=N+1,N+2,...,2N, (39)
’_k"'('ﬂi_"?j ? .
@;=In 3y fori=12,...,N
and j=1,2,...,N, ori=N+1,N+2,...,2N
and j=N+1,N+2,...,2N, (40)

where 7; and £¥ are real parameters of the ith soliton;
3.=0,1 indicates the summation over all possible com-
binations of u;=0,1, u,=0.1,..., p,y=0,1 under the
condition 37, =3 u; 4 n; Si—o,, indicates the sum-
mation over all possible combinations of v;=0,1,
v,=0,1,...,v,5=0,1 under the conditions 3N v,
=1+3N v, 4y; and I3V ;) indicates the summation
over all possible pairs taken from 2N elements with the
specified condition j > i, as indicated. We assume all 7,
are different from each other.

By the same method as used in Sec. II, it can be proved
that f and g defined by Egs. (36) and (37) satisfy Egs. (34)
and (35), which is no longer repeated here.

From Egs. (30)-(40), we can obtain a fundamental sol-
iton solution of Eq. (32)
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172 2, 2%%6
-k k" &, & Srim—m)e
(z,T)= | —— sech T+—n%2||, (41) =¢ l+e”—
P 3 | et Te 8 k()2
+2
o o Byt =gl
where 7 is the inverse of the soliton width, and forms of f - 3 5 43)
and g for N =2 k"' my(my+m,)
Taking
2
— 3[625l 37/eg‘+§2 3}/82;2 O=—1j 3y(n,—n,)
f—l_ e 2— " 2 - e 2 ! 2 —4k”, 2( + )2 ’
4k"'ny  k"'(ny+my)° 4kM'my M0 +1,
=1 3y(m—n,)’
9y my—my)te @2) L )
16(k" 2aini(n,+n)* in Egs. (42) and (43), we obtain the two soliton solution
|
2( + ) i e
plz, )=V —k"" /3y |1;71— ’72| 7, cosh 172T+£6—71%z +7, cosh n1T+—6—1ﬁz
1~ M
" ( +1] )2 " 4 —1
X {cosh (171+772)T+£—(n?+n§)z +—m—2;cosh (m—)T+—(n3—n3)z -+-——£22 . (44)
6 (=) 6 (=)

The soliton solutions (41) and (44) are in agreement
with those of the modified Korteweg—de Vries equation
[6,7]. Having used transformation (31), we only can take
k''=B=0, instead of y=K'"'=0; k" only makes con-
stant shifts to the carrier frequency w, and wave number
ko, when k''=8=0, Eq. (2) becomes (32). The velocity of
the soliton (in the group-velocity frame) is proportional
to third-order dispersion and square of its width (or the
inverse of its amplitude), the higher-order solitons are
aperiodic and third-order dispersion acts to decompose
the bond soliton into its component solitons, which is in
agreement with that of the solutions (26) and (29).

IV. SUMMARY AND CONCLUSIONS

In this paper, we obtain the exact N-soliton solutions
of the extended nonlinear Schrodinger equation under the

I

conditions 3k"y =Bk’ and k"y=pk'’, respectively.
The soliton solutions under both of the above conditions
show that the velocity of the soliton (in the group-
velocity frame) is proportional to third-order dispersion
and square of its width (or the inverse of its amplitude);
the higher-order solitons are aperiodic and third-order
dispersion acts to decompose the bond soliton into its
component solitons.

It should be noted that under the condition
k'y=Bk'", the soliton solutions are the same as those of
the modified Korteweg—de Vries equation. The modified
Korteweg—de Vries equation is derived in the study of
anharmonic lattices [6,8]. The above results show that
under the appropriate condition, femtosecond optical sol-
iton pulses propagating in a monomode fiber may have
the same features as those of the solitons in anharmonic
lattices, which is very important and interesting.
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